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Whole-GenomeExpressionAnalysis in
PrimaryHumanKeratinocyteCell Cultures

Exposed to 60 GHzRadiation
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The main purpose of this study is to investigate potential responses of skin cells to millimeter
wave (MMW) radiation increasingly used in the wireless technologies. Primary human skin cells
were exposed for 1, 6, or 24 h to 60.4 GHz with an average incident power density of 1.8 mW/
cm2 and an average specific absorption rate of 42.4 W/kg. A large-scale analysis was performed
to determine whether these exposures could affect the gene expression. Gene expression micro-
arrays containing over 41,000 unique human transcript probe sets were used, and data obtained
for sham and exposed cells were compared. No significant difference in gene expression was
observed when gene expression values were subjected to a stringent statistical analysis such as
the Benjamini–Hochberg procedure. However, when a t-test was employed to analyze microarray
data, 130 transcripts were found to be potentially modulated after exposure. To further quantita-
tively analyze these preselected transcripts, real-time PCR was performed on 24 genes with the
best combination of high fold change and low P-value. Five of them, namely CRIP2, PLXND1,
PTX3, SERPINF1, and TRPV2, were confirmed as differentially expressed after 6 h of exposure.
To the best of our knowledge, this is the first large-scale study reporting on potential gene expres-
sion modification associated with MMW radiation used in wireless communication applications.
Bioelectromagnetics 33:147–158, 2012. � 2011 Wiley Periodicals, Inc.
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INTRODUCTION

During the last decade, the wireless applications
with the most significant growth rates have been the
cellular mobile networks (e.g., Global System for
Mobile Communications (GSM) and Universal
Mobile Telecommunications System (UMTS)) and
wireless local area networks (e.g., Wireless Fidelity
(WiFi) and Worldwide Interoperability for Micro-
wave Access (WiMAX)). Due to the saturation of the
lower part of the microwave spectrum and the in-
creasing need for high data transfer rates, the operat-
ing frequencies of emerging wireless communication
systems have recently shifted toward the millimeter
wave (MMW) band (30–300 GHz). In this context,
applications in the 57–64 GHz band have attracted
growing attention particularly for broadband indoor
short-range wireless communications (e.g., Wireless
High-Definition (WiHD) and Wireless Gigabit
Alliance (WiGig)), and recently for body-centric
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communications within future Body Area Networks
(BAN) [Zhadobov et al., 2011].

The increasing number of MMW exposure sour-
ces requires the assessment of potential biological
and health effects of these radiations. Nowadays,
possible health risks due to utilization of wireless
technologies represent a major public concern.
Therefore, it is important to evaluate potential bio-
logical impacts induced by 60 GHz radiation. In
order to generate data regarding the safety of emerg-
ing wireless communications, we performed a whole-
genome expression analysis to investigate potential
biological effects of MMW radiations corresponding
to near-future application scenarios.

At MMW frequencies, heating is the major ef-
fect related to the absorption of the electromagnetic
energy by tissues, cells, and water solutions. Howev-
er, wireless MMW communication systems operate
at power density (PD) levels low enough (<1 mW/
cm2 for the general public) to not induce any signifi-
cant thermal effect. For such incident PD levels, skin
heating is typically below 0.1 8C [Zhadobov et al.,
2011]. The existence of direct or combined biological
effects, not directly related to the temperature rise, is
still controversial.

MMW at intermediate PD (5–15 mW/cm2)
have been used in Eastern European countries for
therapeutic purposes [Pakhomov et al., 1998]. In
addition, several publications have shown that low-
and mid-power MMW radiation may interfere with
some cellular processes. For instance, it was demon-
strated that MMW are able to induce anti-inflamma-
tory effects or modify the immune status of an
organism [Logani et al., 2002; Makar et al., 2003;
Gapeyev et al., 2008]. Furthermore, it was shown
that MMW treatment may have an analgesic effect in
both human and animal models [Radzievsky et al.,
1999; Rojavin et al., 2000]. This hypoalgesia can
result from a direct effect of MMW on nerve cells
[Radzievsky et al., 2008; Alekseev et al., 2010].

It was also observed that low-power MMW can
modify the proliferation [Beneduci et al., 2005] and
energetic metabolism of exposed cells [Beneduci
et al., 2007]. However, these results have not been
reproduced, and other studies have showed that nei-
ther the cell doubling time nor the cell cycle is sig-
nificantly modified by MMW exposure [Beneduci,
2009; Zhadobov et al., 2009]. At the molecular
level, 60 GHz radiation below 1 mW/cm2 can induce
structural modifications in artificial biomembranes
[Zhadobov et al., 2006]. Similarly, it was shown
that MMW at 53 GHz can induce physical changes
of phospholipid vesicles [Ramundo-Orlando et al.,
2009]. Taking into account the non-ionizing nature of

MMW, it was not surprising that these radiations
were not genotoxic [Vijayalaxmi et al., 2004]. On the
other hand, the possibility of a proteotoxic effect has
been raised. Our previous in vitro studies between 59
and 61 GHz have demonstrated that MMW have no
proteotoxic effect for incident power densities close
to those expected from commercial wireless commu-
nication systems (0.1–1 mW/cm2) [Zhadobov et al.,
2007; Nicolas Nicolaz et al., 2009a,b].

Among the scientific literature, very few publi-
cations focused on potential MMW effects on gene
expression. Millenbaugh et al. [2008] have shown
that expression of genes involved in transcriptional
regulation, protein folding, oxidative stress, immune
response, and tissue matrix turnover can be modified
after high-power exposure (75 mW/cm2) of rats to
35 GHz. However, as the PD was high, the results
were at least partly mediated by the temperature rise.
The skin injury led to subsequent recovery processes
involving inflammation and tissue repair. Potential
target genes of MMW radiation still remain to be
identified. Since MMW are essentially absorbed by
the superficial layers of skin [Zhadobov et al., 2008],
the main purpose of this study was to perform a
large-scale genomic analysis of primary human kera-
tinocytes after 1, 6, or 24 h exposure to MMW at
60.4 GHz.

MATERIALS AND METHODS

Cell Culture and Exposure Protocol

Primary keratinocytes were composed of pooled
cells from three patients and isolated from human
neonatal foreskin discarded during circumcision.
Keratinocytes were cultured at 37 8C in a humidified
5% CO2 atmosphere. Cells were grown in conditions
recommended by the supplier, on tissue culture
plates coated with Collagen IV (Becton Dickinson,
Franklin Lakes, NJ) in presence of defined keratino-
cyte serum-free media (Gibco, Carlsbad, CA). To
exclude any problem of senescence or drift of
the cellular population, the experiments on primary
keratinocytes were randomly conducted at passages
4–7.

Three exposure durations were considered: a
short-term 1 h exposure, a mid-term 6 h exposure,
and a long-term 24 h exposure. One day prior to
exposure, cells were seeded in a six-well culture
plate at a density of 16,000 cells/cm2, and the medi-
um was changed just before exposure. For each ex-
periment, cells remained in the incubator for 24 h
with the generator switched on for 0 h (sham), 1, 6,
or 24 h. Cells were harvested immediately after. Four

148 LeQue¤ mentetal.

Bioelectromagnetics



independent biological replicates per condition were
used.

Exposure Set-Up and Dosimetry

The cells were exposed or sham-exposed to
60.4 GHz using the exposure set-up schematically
represented in Figure 1A. The six-well tissue culture
plate (8.5 cm � 12.7 cm) containing the cells was

placed in the MEMMERT UE400 incubator (Fisher
Scientific, Illkirch, France) at 37 8C and irradiated
from the bottom by a pyramidal horn antenna. The
main units and characteristics of this exposure set-up
were previously described in detail [Zhadobov et al.,
2009]. Sham exposures were performed under the
same experimental conditions but with the generator
switched off.

The tissue culture plate was placed in the far-
field zone of the antenna. This ensures a relatively
uniform distribution of the PD over cells located in
different wells. The incident PD and average specific
absorption rate (SAR) within the cell monolayers
have been computed numerically using the methodol-
ogy described by Zhadobov et al. [2009]. Our simu-
lation results are shown in Figure 1B. These data are
given for an antenna output power of 425 mW. The
peak incident PD and average PD over six wells is
equal to 2.3 and 1.8 mW/cm2, respectively. These
PD values are representative of general public
(1 mW/cm2) and occupational (5 mW/cm2) safety
MMW exposure limits for far-field exposures [Inter-
national Commission on Non-Ionizing Radiation Pro-
tection (ICNIRP), 1998]. The radiated power and
operating frequency were carefully checked and ad-
justed before each exposure.

To estimate the maximal temperature eleva-
tion within the exposed samples, the temperature
rise within the culture medium was locally monitored
within two central wells (Fig. 1B) using a Reflex
multi-channel fiber optic thermometer (Optoprim,
Paris, France) with a precision of �0.05 8C and
accuracy of �0.5 8C. The temperature dynamics
were measured at the very tip of the optical fiber
(diameter of 0.4 mm; Fig. 1C) with a 1 Hz sampling
rate. The actual temperature increment for the
exposed cells is expected to be equal to or below
measured values, depending on the exact location of
the cells within the well. It is worthwhile to note that
the temperature rise distribution at the cell level is
more uniform compared to the SAR distribution
because of the thermal conductivity and convection.

RNA Isolation and Complementary RNA Labeling

RNAs from three wells were pooled together,
constituting one RNA sample. Two independent
RNA purifications were carried out immediately after
each exposure. The first RNA preparation was used
for micro-array analysis and the second one for
reverse transcription-polymerase chain reaction (RT-
PCR) validation (Fig. 2). Cells were washed with
phosphate-buffered saline (PBS) and then harvested
in lysis buffer. Total RNAs were isolated using
Qiagen RNeasy columns (Qiagen, Hilden, Germany)

Fig. 1. A: Schematic representation of the exposure system:
(1) tissue culture plate; (2) 17 dB gain pyramidal horn antenna
(aperture dimensions 22.2 mm � 16.7 mm); (3)MMWabsorbers.
B: Incident power density (PD) distribution, average incident PD
and SAR foreachwell, and locations of the optical fibers used for
the temperaturemeasurements.C: Dimensions of one well of the
tissue culture plate and location of the optical fiber probe within
thewell.
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according to the manufacturer’s instructions. Purified
RNAs were then quantified using a Nanodrop 1000
spectrophotometer (Nanodrop Technology, Cam-
bridge, UK), and RNA integrity was assessed using a
2100 Bioanalyzer (Agilent, Palo Alto, CA). All RNA
samples had an RNA integrity number (RIN) greater
than 9. RNA samples (350 ng) and RNA controls
from the One-Color RNA Spike-In Kit (Agilent)
were first reverse transcribed according to the manu-
facturer’s recommendations. The resulting cDNAs
were subsequently used for in vitro transcription and
labeled with cyanine-3-labeled cytosine triphosphate
using the Low RNA Input Linear Amplification Kit
PLUS, One-Color (Agilent) according to the manu-
facturer’s protocol. Cy3-labeled cRNAs were then
purified using the RNeasy Mini Kit (Qiagen) and
checked for quality with the Nanodrop 1000
spectrophotometer.

Data Analysis and Statistical Methodology

Briefly, 1.65 mg of Cy3-RNAs were hybridized
to DNA microarrays using the Whole Human
Genome Kit, 4 � 44 K (Agilent) according to the
manufacturer’s instructions. The fluorescence intensi-
ty was assessed using a DNA microarray scanner
(G2565BA; Agilent), and Feature Extraction Soft-
ware version 7.5 (Agilent) was used to extract signals
from local background. Only features with good sig-
nal-to-noise ratios were used for further analysis.
Data were log2-transformed and normalized (quantile
normalization and baseline transformation) using
GeneSpring GX software (Agilent). Analysis of iden-
tical replicate samples shows a slight variability, sug-
gesting good technical quality. Moreover, the
accuracy of the relative quantification was validated
using the One-Color RNA Spike-In Kit. Genes were

0h = sham

1 h

6 h
24 h

0h 12h 18h 23h 24h6h

generator switched off

generator switched on
Culture of normal human keratinocytes
4 independent exposures per condition

RNA preparation 1

RNA preparation 2Real time
RT-PCR

Micro-Array
hybridization

Analysis using GeneSpring GX software

T- test with 
Bonferroni, correction

T- test without

Fold change > 2, p-value < 0.05

0 genes identified130 genes identified

Gene anotation24 genes 
selected

statistical correction 

Fig. 2. Experimentalprotocol.
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considered significantly differentially expressed if the
absolute fold change (FC; exposed vs. sham) was
greater than 2 and the P-value was <0.05 with the
Benjamini and Hochberg (B–H) procedure (multitest,
R package, GeneSpring GX). A second microarray
analysis was performed using a less stringent condi-
tion by removing the B–H correction and using a
single t-test. In absence of statistical correction, some
false positives might be expected and the genes iden-
tified cannot be considered as significantly differen-
tially expressed, but as potentially affected by MMW
exposure. We estimated the number of false positives
by using the permutation method based on a sham
versus sham comparison [Whitehead et al., 2006b].
We found around 80 potential false positives with a
t-test alone, whereas no false positives were expected
when using the B–H correction.

RT-PCR Analysis

In order to validate microarray results, 24 iden-
tified genes were examined using a real-time RT-
PCR approach. Nine hundred nanograms of total
RNAs were reverse transcribed into cDNA using ran-
dom primers according to the instructions from the
RT2 First Strand Kit (SA Biosciences, Frederick,
MD). For the real-time PCR analysis, each 96-well
plate contained 3 panels of the 24 selected target
genes, 5 housekeeping genes, 1 reverse transcription
control, and 1 positive PCR control (RT2 Profiler
PCR array system, SA Biosciences). The primer sets
were designed and specifically optimized by a com-
puter algorithm (SA Biosciences). PCRs were per-
formed in triplicate on four cDNA preparations
corresponding to four independent exposures per
condition (sham, 6 or 24 h). Reactions were ampli-
fied using RT2 SYBR Green qPCR Master Mix (SA
Biosciences) in a MyIQ real-time PCR detection
system (Bio-Rad, Hercules, CA). Fluorescence was
measured at the beginning of each annealing/
extension step. The relative expression of each
mRNA was calculated by the DCt method [Winer
et al., 1999], and data were expressed as fold of
induction, which corresponds to the ratio of exposed
mRNA to sham mRNA.

RESULTS

Temperature Measurement and Heat Shock
Response Analysis

The main known effect of exposure to MMW
radiation is temperature rise. Therefore, we measured
temperature dynamics within two central wells of the
tissue culture plate at a distance of 1 mm from the

bottom of the wells (Fig. 3A). The location of the
optical fiber tip (Fig. 1B) corresponds to the maximal
PD and to the peak of the temperature elevation
within the plate. The data are shown for a 2 h period,
which coincides with the most significant tempera-
ture rise rate. The steady-state was reached after 2 h
of exposure, and the temperature increment was
around 0.8–0.9 8C. The difference of 0.1 8C between
two measurements may result from a slight misalign-
ment of the antenna relative to the tissue culture
plate’s central axis. Using real-time RT-PCR, we
verified that a 1 8C rise does not induce heat shock
protein 70 and heat shock protein 27 (HSP70 and
HSP27, respectively) expression in human keratino-
cytes (data not shown). These results confirm data
from literature, showing that such a small tempera-
ture increase does not trigger a thermal biological
response [Lovell et al., 2007]. This was confirmed by
the DNA microarray analysis. Genes known to be
sensitive to heat shock [Trinklein et al., 2004; Kultz,
2005] were extracted from microarray data and their
overall expression was not modified in our exposure
conditions (Fig. 3B). However, a detailed analysis
shows that three genes are slightly but significantly
induced after a 6 h exposure (Table 1). These genes,
DNAJB1, DNAJB6, and HSPA1A, are induced by
factors of 1.66, 1.44, and 1.93, respectively, which
is not comparable to the classical overexpression
induced by an acute heat shock (induction by factors
of 38.7, 4.4, and 58.4, respectively; Trinklein et al.
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[2004]). Altogether, our data clearly show that the
exposure conditions used in our experiments do not
trigger a heat shock response in MMW-exposed
keratinocytes.

Analysis of Microarray Data

After normalization of the expression levels, we
selected 26,301 entities having fluorescence intensi-
ties higher than 50 for two RNA samples in at least
one condition. Thereafter, the average � standard
deviation (SD) for the four replicates of sham and
exposed genes was calculated. The results were fil-
tered for FC >2, and the gene list was subjected to a
t-test with a B–H correction (P-value cut-off of
0.05). No gene passed the statistical restrictions
(Table 2), showing that exposure to MMW does not
induce significant differential gene expression.

Because the B–H correction is a stringent test
that can generate false negatives, we used a simple
t-test to identify a list of genes possibly affected by
MMW exposure. This approach allowed the identifi-
cation of 130 transcripts potentially modulated by
MMW exposure (Table 2 and Fig. 4). We found 111
genes downregulated and 19 upregulated. Interest-
ingly, the short-term 1 h MMW exposure caused vir-
tually no change in gene expression (1 gene, Fig. 4).
Upon longer exposure (6 h), 120 gene entities were
identified, whereas only 21 were found with a pro-
longed 24 h exposure. Therefore, most of the respon-
sive genes were specific to the 6 h exposure,
suggesting a transient and reversible cellular re-
sponse. This might also reflect the temporal dynam-
ics of the cell response, including early and late
MMW responsive genes. These candidate genes are
functionally widely diversified when classified by
their Gene Ontology (GO) terms (data not shown).
However, in absence of the B–H correction, we can
expect that some false positives might contaminate
our list of potential gene entities. So, to confirm the
results from low stringency statistical analysis, real-
time PCR analysis was performed on matched
sample preparations (Fig. 2).

RT-PCR Validation

Quantitative real-time PCR can be considered
as the most sensitive and reliable method for gene

expression measurement, but this technology is not
suitable for high-throughput studies. Thus, we select-
ed 24 genes with the best combination of high FC
and low P-value. PCR analysis of four independent
exposures showed that five genes could be signifi-
cantly confirmed as differentially expressed (Fig. 5).
These genes are: (1) cysteine-rich protein 2 (CRIP2,
t-test, P ¼ 0.001 for a 6 h exposure), a zinc-binding
protein involved in signaling, hematopoiesis, and cell
proliferation; (2) Plexin D1 (PLXND1, t-test, P ¼
0.031 for a 6 h exposure), a transmembrane receptor
involved in development; (3) Pentraxin-related gene
(PTX3, t-test, P ¼ 0.009 for a 6 h exposure), a pro-
tein involved in innate immunity and inflammatory
response; (4) Serpin peptidase inhibitor (SERPINF1,
t-test, P ¼ 0.038 for a 6 h exposure), a secreted
endopeptidase inhibitor that has anti-angiogenic and
anti-proliferation functions; and (5) transient receptor
potential cation channel (TRPV2, t-test, P ¼ 0.001
for a 6 h exposure and P ¼ 0.003 for a 24 h expo-
sure), a calcium channel involved in sensory percep-
tion. Although not exactly identical, the decreases in
mRNA levels detected by real-time PCR were close
to those detected by microarrays (Table 3).

TABLE 2. Number of Transcripts Selected According to the Test Used

FC > 2, t-test with B–H correction
(P-value <0.05)

FC > 2, t-test
(P-value <0.05)

1 h exposure versus sham (0 h) 0 1
6 h exposure versus sham (0 h) 0 120
24 h exposure versus sham (0 h) 0 21
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DISCUSSION AND CONCLUSION

In this study, we used gene expression analysis
to investigate potential responses of human skin cells
to low-power MMW radiation. Utilization of whole
human genome microarrays permits a large-scale
analysis without a priori preselection, and provides a
wide picture of gene expression in the exposed cells.
As change in gene expression is usually observed
within a specific time frame, we exposed normal
human keratinocytes for 1, 6, or 24 h to 60.4 GHz
(with an average incident PD equal to 1.8 mW/cm2).
This strategy also reduces the possibility of masking
effects due to compensation mechanisms.

Microarray data analysis using stringent statisti-
cal conditions showed no compelling evidence of
gene modulation, demonstrating that MMW expo-
sures with incident PD levels close to the exposure
limits do not strongly modify gene expression. Using
a less stringent analysis of microarray data, we iden-
tified a group of 130 transcripts potentially modulat-
ed by the MMW exposure. Some large-scale studies
have already examined gene expression modification

after microwave exposure (for a review, see McNa-
mee and Chauhan [2009]). Most of these studies con-
cern the effects of different mobile phone systems on
various biological models. In addition, the data are
very heterogeneous, making any comparison difficult.
Several publications showed no significant difference
between sham or exposed cells [Gurisik et al., 2006;
Qutob et al., 2006; Whitehead et al., 2006a; Chauhan
et al., 2007; Huang et al., 2008], or described weak
changes that were not confirmed by RT-PCR valida-
tion [Zeng et al., 2006; Paparini et al., 2008; Roux
et al., 2011; Sakurai et al., 2011], while other micro-
array studies reported modified gene expression after
radiofrequency exposure [Belyaev et al., 2006;
Nylund and Leszczynski, 2006; Remondini et al.,
2006; Zhao et al., 2007; Huang et al., 2008]. How-
ever, these positive studies reported a small number
of responsive genes (9–34) with a FC generally close
to, or lower than 2. These genes belong to different
functional families and data comparison does not
permit establishing a list of common responsive
genes. Regarding this aspect, our present work is not
an exception because the group of 130 entities that
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we identified also poorly overlapped with previously
identified genes. For example, if we focus on MMW,
our results differ from those reported by Millenbaugh
et al. [2008], who identified 56 and 58 responsive
genes, 6 and 24 h, respectively, after a 35 GHz expo-
sure. This could be due to the presence of false pos-
itives in our list, or because of differences in
biological models (rat skin vs. human primary kerati-
nocytes) or exposure parameters (35 GHz at 75 mW/
cm2 vs. 60.4 GHz at 1.8 mW/cm2). It is worthwhile
to note that in Millenbaugh’s study, the rat skin sur-
face temperature exceeded 41 8C during exposure,
whereas our experimental conditions had a moderate
impact on temperature rise and did not induce a bio-
logical heat shock response from the cells.

RT-PCR validation showed that only 5 genes
out of the 24 tested were confirmed to be differential-
ly expressed after a 6 h exposure. Among these 5
candidates, 2 can be linked to the MMW bioeffects
reported in the literature. PTX3 is involved in inflam-
matory responses, and during the past several years
the effects of MMW irradiation on the immune
system have been extensively studied [Rojavin and
Ziskin, 1998; Makar et al., 2006]. PTX3 is a zymo-
san-binding protein, and it is noteworthy to mention
that Gapeyev et al. [2008] have shown that MMW
reduced both the footpad edema and local hyperther-
mia induced by zymosan in mice. TRPV2 is a widely
expressed calcium channel. In neurons of the periph-
eral nervous system, TRPV2 is involved in heat sens-
ing and has been proposed as a candidate for the
mediation of MMW effects in pain therapy [Alekseev
et al., 2010].

In conclusion, only five transcripts were found
to be significantly affected. Compared to other
microarray analyses studying the effect of pollutants
or drug treatments, the number of responsive genes
in the present study is extremely modest. Moreover,
the gene expression modification is transient (mostly
after 6 h of exposure) and with a limited amplitude
(generally with a FC close to 2). One can only
wonder about the consequence on human health, of
such subtle changes at cellular level. Thus, we can
consider that MMW (continuous wave at 60.4 GHz,
1.8 mW/cm2) do not have any dramatic impact on
primary human keratinocyte cultures. However, we
cannot totally exclude that MMW could affect gene
expression in vivo because skin is a complex tissue
composed of different kinds of cells with various
sensitivities. Moreover, one cannot exclude that other
exposure conditions in terms of frequency, incident
PD, polarization, or type of exposure (intermittent or
continuous) could result in an amplified effect on
cells. In this framework, the knowledge of the

influence of electromagnetic field parameters on bio-
logical systems will become more important, taking
into account the diversity of the emerging wireless
technologies.
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